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Abstract

This study discusses the development of the exact series solutions for the computation of temperature in parallel plate and circular
porous passages. These passages are filled with relatively high thermal conductivity materials; and therefore, this study includes the con-
tribution of axial conduction. This leads to the solutions for a set of modified Graetz type problems for parallel plate channels and cir-
cular pipes. The numerical procedure yields the Nusselt number that indicates significant variations depending on the size of the Peclet.
The Nusselt number is computed for selected values of the Peclet number, mainly, to demonstrate the mathematical and numerical
procedure.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The placement of porous materials in flow passages can
significantly enhance the heat transfer rate if the thermal
conductivity of porous materials is sufficiently large. There
has been a recent interest in using this concept for elec-
tronic cooling applications [1].

When the axial conduction is negligible, various studies
are reported in the literature. Numerically developed solu-
tions are in [2,3] and exact series solutions for different pas-
sages are in [4]. The use of Green’s function is emphasized
for parallel plate channels in [5] and for circular pipes in [6].
Also, for other passages, the method of weighted residuals
in presented in [7].

The porous materials with relatively high thermal con-
ductivity have small Peclet numbers and the contribution
of axial conduction is significant. Nield et al. [8] numeri-
cally studied the contribution of axial conduction for flow
through a porous medium located between two parallel
plates. A similar study for flow through circular porous
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passages is in [9]. This study is devoted to the presentation
of the exact series solutions for these flow passage by using
a Graetz-type analysis to include the effect of axial conduc-
tion. The mathematical procedures using series solutions
are similar to those in [5,6]; however, major numerical
modifications are necessary.

2. Temperature fields in parallel plate channels

The first flow model considers a steady and hydrody-
namically fully developed flow between two impermeable
parallel plates, 2H apart (see Fig. 1). The Brinkman
momentum equation describes the velocity in these
channels

le

o
2u

oy2
� l

K
u� op

ox
¼ 0; ð1Þ

where l is the fluid viscosity, le the effective viscosity, and
K is the permeability. The solution of this equation is
available in the literature, e.g., Ref. [4]. However, for com-
pleteness of this presentation, a brief description of the
mathematical procedure is necessary. Assuming constant
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Fig. 1. Schematic of a duct with prescribed surface temperatures.

Nomenclature

A area, m2

Bm coefficient
Br Brinkman number, lU2/[Dake(T1 � T2)]
C duct contour, m
cn coefficients
cp specific heat, J/kg K
Da Darcy number, K/H2 or K=r2

o
Dh hydraulic diameter, m
dn coefficients
F pressure coefficient
f Moody friction factor
h heat transfer coefficient, W/m2 K
�h average heat transfer coefficient, W/m2 K
i, j indices
K permeability, m2

ke effective thermal conductivity
M le/l
NuD Nusselt number, hDe/k
m, n indices
p pressure, Pa
Pe Peclet number, qcpLcU/ke

Pr Prandtl number, lcp/ke

r radial coordinate
ro pipe radius, m

S volumetric heat source, W/m3

T temperature, K
Ti temperature in region 1 or 2
Tw wall temperature, K
u velocity, m/s
�u �u ¼ lu=ðUL2

cÞ
U average velocity, m/s
U average value of �u
x axial coordinate, m
�x x/(PeH) or �x ¼ x=ðPeroÞ
y, z coordinates, m
�y;�z y/a and z/a

Greek symbols

b coefficient, Eqs. (15b) or (35b)
U �op/ox

km eigenvalues
hi (T � Ti)/(T1 � T2), i = 1 or 2
l fluid viscosity, N s/m2

le effective viscosity, N s/m2

w coefficient, Eqs. (15a) or (35a)
q density, kg/m3

g y/H or r/ro

x parameter, 1=
ffiffiffiffiffiffiffiffiffiffi
MDa
p
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pressure gradient U = �op/ox, Eq. (1), in dimensionless
form, reduces to an ordinary differential equation

M
d�u
d�y
� 1

Da
�uþ 1 ¼ 0; ð2Þ

where �y ¼ y=H , M = le/l, �u ¼ lu=ðUH 2Þ, and Da = K/H2

is the Darcy number. The solution of Eq. (2) using the
boundary conditions �u ¼ 0 at �y ¼ 1 and the symmetry con-
dition o�u=o�y ¼ 0 at �y ¼ 0 is

�u ¼ Da 1� coshðx�yÞ
coshðxÞ

� �
; ð3Þ

where x = (MDa)�1/2. Then, the definition

U ¼
Z 1

0

�ud�y ð4Þ
leads to a relation for the reduced mean velocity U as

U ¼ Da½1� tanhðxÞ=x� ð5Þ
and

u
U
¼ �u

U
¼ x

x� tanhðxÞ 1� coshðx�yÞ
coshðxÞ

� �
. ð6Þ

The temperature distribution assuming local thermal
equilibrium is obtainable from the energy equation

u
oT
ox
¼ k

qcp

o2T
ox2
þ o2T

oy2

� �
. ð7Þ

Introducing the Peclet number Pe = qcp HU/k where U is
the mean velocity in the duct, and dimensionless
�x ¼ x=ðPeHÞ, the energy equation, Eq. (7), reduces to

d2T
d�y2
¼ u

U
oT
o�x
� 1

Pe2

d2T
d�x2

. ð8Þ

Often, there is an unheated section in a passage that is fol-
lowed by the heated section as shown in Fig. 1. When T1

and T2 in Fig. 1 are constants, one can select two different
dimensionless temperatures, h1 = (T � T1)/(T1 � T2) when
x < 0 and h2 = (T � T2)/(T1 � T2) when x > 0 and the par-
tial differential equation, Eq. (8), for these two regions
takes the form

d2hi

d�y2
¼ u

U
ohi

o�x
� 1

Pe2

d2hi

d�x2
for i ¼ 1 or 2. ð9Þ
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The solution of the partial differential equation (9) is
obtainable using the method of separation of variables by
setting hð�x; �yÞ ¼ X ð�xÞY ð�yÞ. The substitution of this func-
tional for h in Eq. (9) yields

Y 00

Y
¼ u

U
X 0

X
� 1

Pe2

X 00

X
. ð10Þ

Because u = u(y) on the right side of Eq. (10), it is possible
to separate the variables if one considers the relation
X 0ð�xÞ ¼ k2X ð�xÞ and then differentiate it to get X 00ð�xÞ ¼
k2X 0ð�xÞ ¼ k4X ð�xÞ. This leads to the following differential
equation for computation of Y ð�yÞ:

Y 00ð�yÞ � k2 u
U

� �
Y ð�yÞ þ k4

Pe2
Y ð�yÞ ¼ 0. ð11Þ

The parameter k is the eigenvalue in this equation and it is
the solution of the differential equation X 0ð�xÞ ¼ k2X ð�xÞ;
that is, expðk2�xÞ. This methodology leads to the following
temperature solutions,

hi ¼
X1
m¼1

Amek2
m�xY mð�yÞ for i ¼ 1 or 2. ð12Þ

In this equation h1 is finite as x!�1 and h2 is finite as
x! +1. Therefore, for x < 0, the eigenvalue k in Eq.
(11) is real. However, the coefficient k in Eq. (11) becomes
imaginary when x > 0. This leads to the following two rela-
tions in which k2

m in real for both h1 and h2:

h1 ¼
X1
m¼1

AmY mð�yÞek2
m�x when x < 0 ð13aÞ

and

h2 ¼
X1
m¼1

BmY mð�yÞe�k2
m�x when x > 0. ð13bÞ

Because the computation of h2 is the main objective of this
study, Eq. (11) is utilized when k is replaced with ik. Once
the value of u/U from Eq. (6) is placed in the modified Eq.
(11), it becomes

Y 00ð�yÞ þ k2 x
x� tanhðxÞ 1� coshðx�yÞ

coshðxÞ

� �	 

Y ð�yÞ

þ k4

Pe2
Y ð�yÞ ¼ 0. ð14Þ

Next, consideration is given to the exact and numerical
solutions of this ordinary differential equation using a
methodology similar that in [4]. For simplicity of this pre-
sentation, let

w ¼ 1

x½x� tanhðxÞ� ð15aÞ

and

b ¼ 1

coshðxÞ ð15bÞ
then Eq. (14) reduces to

Y 00ð�yÞ þ fk4=Pe2 þ x2k2w½1� b coshðx�yÞ�Y ð�yÞg ¼ 0. ð16Þ

This differential equation has the form of a modified
Mathieu differential equation [10] and the solution for this
special Mathieu differential equation is described below.

Solution: The solution of Eq. (16) has a hypergeometric
form

Y ðgÞ ¼
X1
n¼0

cng
n; ð17Þ

wherein the independent variable g ¼ �y ¼ y=H . Following
substitution Y(y) = Y(g) from Eq. (17) in Eq. (16) and after
removing the zero terms, the results is

X1
n¼2

cnnðn� 1Þgn�2 þ x2k2w½1� b coshðxgÞ�

�
X1
n¼0

cng
n þ ðk4=Pe2Þ

X1
n¼0

cng
n ¼ 0. ð18Þ

Next, using the relation

b coshðxgÞ ¼
X1
i¼0

aig
i; ð19Þ

where

ai ¼
b
i! ðxÞ

i when i is even,

0 when i is odd,

(
ð20Þ

further reduces Eq. (18) and it can be written as

X1
n¼2

cnnðn� 1Þgn�2 þ ðk4=Pe2 þ x2k4wÞ

�
X1
n¼0

cng
n � x2w

X1
n¼0

dng
n ¼ 0; ð21Þ

where

dn ¼
Xn

j¼0

cjan�j. ð22Þ

The term that includes g0 suggests c0 = constant = 1
whereas the terms that include g1 require c1 = 0 because
of symmetry at y = 0. Accordingly, all the terms with
odd power vanish in this solution. When n > 1, the con-
stants are obtainable from the recursive relationz

cnþ2 ¼ �
k4cn=Pe2 þ x2k2wðcn � dnÞ
ðnþ 2Þ2 � ðnþ 2Þ

. ð23Þ

When Pe!1, this relation reduces to the form presented
in [4].

Following the determination of cn, Eq. (17) yields the
solution for Y ð�yÞ and the next step is the computation of
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the eigenvalues. The eigencondition Y(1) = 0 when �y ¼
g ¼ 1 leads toward accomplishing the task of finding the
eigenvalues. Once the mth eigenvalue is known, the func-
tion Y mð�yÞ for the mth eigenvalue replaces Y ð�yÞ in Eq.
(17) for subsequent insertion in Eqs. (13a) and (13b). Fol-
lowing the computation of the eigenvalues, the thermal
compatibility conditions at x = 0 location would provide
the constants Am and Bm also for inclusion in Eqs. (13a)
and (13b).

According to the definitions of h1 = (T � T1)/(T1 � T2)
and h2 = (T � T2)/(T1 � T2), the first compatibility condi-
tion at x = 0 is

h2 � h1 ¼ ðT � T 1Þ=ðT 1 � T 2Þ � ðT � T 2Þ=ðT 1 � T 2Þ ¼ 1

ð24Þ
and the next compatibility condition is

oh1=o�xj�x¼0 ¼ oh2=o�xj�x¼0. ð25Þ
The method of determination of Am and Bm using these
compatibility conditions is combined with that for circular
pipes and it is presented in a later section.

3. Temperature fields in circular pipes

The next presentation concerns the determination of
temperature field in a fluid passing through a porous med-
ium bounded by an impermeable circular wall. The math-
ematical procedure is similar to that described for the
parallel plate channel. In cylindrical coordinates, the
momentum equation is

le

o2u
or2
þ 1

r
ou
or

� �
� l

K
u� op

ox
¼ 0; ð26Þ

where r is the local radial coordinate and x is the axial coor-
dinate. In the subsequent analyses, the characteristic length
is ro and the implemented dimensionless quantities are
�r ¼ r=ro, �u ¼ lu=ðUr2

oÞ, Da ¼ K=r2
o, and x = (MDa)�1/2.

Then, the momentum equation becomes

M
d2�u
d�r2
þ 1

�r
d�u
d�r

� �
� u

Da
þ 1 ¼ 0. ð27Þ

Using the boundary condition �u ¼ 0 at �r ¼ 1 and the con-
dition o�u=o�r ¼ 0 at �r ¼ 0, the solution is

�u ¼ Da 1� I0ðx�yÞ
I0ðxÞ

� �
; ð28Þ

where x = (MDa)�1/2. By definition, the mean velocity is

U ¼ 2

r2
o

Z ro

0

ur dr ð29Þ

and the velocity profile take the following form

u
U
¼ �u

U
¼ xI0ðxÞ

xI0ðxÞ � 2I1ðxÞ
1� I0ðx�rÞ

I0ðxÞ

� �
. ð30Þ

Because the velocity is fully developed, the steady-state
form of the energy equation, in cylindrical coordinates, is
u
oT
ox
¼ k

qcp

o2T
or2
þ 1

r
oT
or
þ o2T

ox2

� �
. ð31Þ

Defining the dimensionless temperature hi = (T � Ti)/
(T1 � T2) where i = 1 or 2, one obtains

u
U

ohi

o�x
¼ o2hi

o�r2
þ 1

�r
ohi

o�r
þ 1

Pe2

o2hi

o�x2
; ð32Þ

where �x ¼ x=ðPeroÞ and Pe = qcproU/k. To use the method
of separation of variables, let h1ð�x;�rÞ ¼ Rð�rÞ expðk2�xÞ and
following its insertion in Eq. (32), one obtains

R00ð�rÞ þ 1

�r
R0ð�rÞ � k2 u

U

� �
Rð�rÞ þ k4

Pe2

� �
Rð�rÞ ¼ 0; ð33Þ

where k is real when x < 0 and imaginary for x > 0.
The next task is the determination of the function Rð�rÞ

with emphasis on h2. The parameter k in Eq. (33) serves
as the eigenvalues. Eq. (33) after substituting for u/U and
replacing k with ki becomes

R00ð�rÞ þ 1

�r
R0ð�rÞ þ k2 xI0ðxÞ

xI0ðxÞ � 2I1ðxÞ
1� I0ðx�rÞ

I0ðxÞ

� �	 

Rð�rÞ

þ k4

Pe2

� �
Rð�rÞ ¼ 0. ð34Þ

Using the abbreviations

w ¼ I0ðxÞ
xI0ðxÞ � 2I1ðxÞ

1

x
ð35aÞ

and

b ¼ 1=I0ðxÞ. ð35bÞ
Eq. (34) becomes

R00ð�rÞ þ 1

�r
R0ð�rÞ þ x2k2w½1� bI0ðx�rÞ�Rð�rÞ þ k4Rð�rÞ=Pe2 ¼ 0.

ð35cÞ
The solution to Eq. (35c) should satisfy the boundary con-
ditions R 0(0) = R(1) = 0. The derivation of an exact series
solution for Eq. (35c) is presented below and the procedure
is similar to that in [4] or [6].

Solution: To obtain the solution, let g ¼ �r ¼ r=ro and
then set

RðgÞ ¼
X1
n¼0

cng
n ð36Þ

then

dRðgÞ
dg

¼
X1
n¼0

cnngn�1 for n > 0 ð37aÞ

and

d2RðgÞ
dg2

¼
X1
n¼0

cnnðn� 1Þgn�2 for n > 1. ð37bÞ

After removing the zero terms in Eqs. (37a) and (37b), the
substitution R(g) and its derivatives in Eq. (35c) yields
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X1
n¼2

cnnðn� 1Þgn þ
X1
n¼1

cnngn þ ðxgÞ2k2w

� ½1� bI0ðxgÞ�
X1
n¼0

cng
n þ g2k4

Pe2

X1
n¼0

cng
n ¼ 0. ð38Þ

Following substitution for:

bI0ðxgÞ ¼
X1
i¼0

aig
i. ð39Þ

Eq. (38) can be written asX1
n¼2

cnnðn� 1Þgn þ
X1
n¼1

cnngn þ x2k2w�
X1
n¼0

cng
nþ2

� x2k2w�
X1
n¼0

dng
nþ2 þ k4

Pe2

X1
n¼0

cng
nþ2 ¼ 0; ð40aÞ

where

dn ¼
Xn

j¼0

cjan�j ð40bÞ

and

ai ¼
b

ði!Þ2
x
2

� �2i
. ð40cÞ

The term that includes g0 suggests c0 = constant = 1
whereas the terms that include g1 require c1 = 0. Accord-
ingly, all the terms with odd powers vanish in the solution.
The values of other constants are obtainable from the
recursive relation

cnþ2 ¼ �
k4cn=Pe2 þ x2k2wðcn þ dnÞ

ðnþ 2Þ2
. ð41Þ

As Pe!1, this equation reduces to the form presented in
[4].

As for the previous case, the solution for Rmð�rÞ must sat-
isfy the eigencondition Rm(1) = 0 when �r ¼ g ¼ 1. This
condition leads toward the computation of eigenvalues
and the function Rmð�rÞ describes the function Rð�rÞ for the
mth eigenvalue; that is, when k = km. The final temperature
solutions, after the computation of eigenvalues, has the
form

h1 ¼
X1
m¼1

AmRmð�rÞek2
m�x when x < 0 ð42aÞ

and

h2 ¼
X1
m¼1

BmRmð�rÞe�k2
m�x when x > 0. ð42bÞ

To compute Am or Bm for inclusion in Eqs. (42a) and (42b),
one needs to use the compatibility thermal conditions as gi-
ven by Eqs. (24) and (25). The method of determination of
coefficients Am or Bm for circular pipes is similar to that for
parallel plate channels; therefore, they are combined in the
following section.
4. Orthogonality condition and the determination

of coefficients

The methodology presented in this section is similar to
that in [11,12]. The modified formulations, presented here,
are to assure the completeness of this presentation. Using
the eigenvalues k2

m and k2
n in Eq. (11) or (33), the differential

equation for both parallel plate and circular passages may
be written as

1

ge

d

dg
ge dwmðgÞ

dg

� �
þ k2

m

k2
m

Pe2
� uðgÞ

U

� �
wmðgÞ ¼ 0; ð43aÞ

1

ge

d

dg
ge dwnðgÞ

dg

� �
þ k2

n

k2
n

Pe2
� uðgÞ

U

� �
wnðgÞ ¼ 0. ð43bÞ

In these two relations w stands for Y in Eq. (11) for parallel
plate channels if the exponent e assumes a value of 0 and w
stands for R in Eq. (33) for circular pipes if e = 1. Eqs.
(43a) and (43b) may be written as

1

ge

d

dg
ge dwmðgÞ

dg

� �
þ k2

m

k2
m þ k2

n

Pe2
� uðgÞ

U

� �
wmðgÞ

� k2
mk2

n

Pe2
wmðgÞ ¼ 0; ð44aÞ

1

ge

d

dg
ge dwnðgÞ

dg

� �
þ k2

n

k2
m þ k2

n

Pe2
� uðgÞ

U

� �
wnðgÞ

� k2
mk2

n

Pe2
wnðgÞ ¼ 0 ð44bÞ

by adding and subtracting the last terms in these equations.
Multiply both sides of Eq. (44a) by gewn(g) and both sides
of Eq. (44b) by gewm(g) and then subtracting the resulting
relations would leads to

wnðgÞ
d

dg
ge dwmðgÞ

dg

� �
� wmðgÞ

d

dg
ge dwnðgÞ

dg

� �

þ ðk2
m � k2

nÞ
k2

m þ k2
n

Pe2
� uðgÞ

U

� �
gewnðgÞwmðgÞ ¼ 0.

The integration of this equation from 0 to 1 and then inte-
grating the first two terms by parts yields,

ðk2
m � k2

nÞ
Z 1

0

k2
m þ k2

n

Pe2
� uðgÞ

U

� �
rewnðgÞwmðgÞdg ¼ 0. ð45aÞ

Therefore, the orthogonality condition isZ 1

0

k2
m þ k2

n

Pe2
� uðgÞ

U

� �
wnðgÞwmðgÞge dg

¼
0 when n 6¼ m

N m when n ¼ m

	
ð45bÞ

for parallel plate channels when e = 0 and for circular pipes
when e = 1, as stated earlier.

This orthogonality condition is to be used to compute the
coefficients Am and Bm from the compatibility condition
given by Eqs. (24) and (25). Because the eigenfunctions
and the eigenvalues in x+ side and x� side appear in different
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summations, it is appropriate to identify h1 and h2 by using
different symbols, e.g., when x < 0

h1 ¼
X1
m¼1

AmfmðgÞeb2
m�x with b2

m > 0 ð46aÞ

and when x > 0

h2 ¼
X1
m¼1

BmgmðgÞe�k2
m�x with k2

m > 0. ð46bÞ

The eigenfunctions fm(g) and gm(g) in Eqs. (46a) and (46b)
are solutions of the following differential equations:

d

dg
ge dfmðgÞ

dg

� �
þ b2

m

b2
m

Pe2
� uðgÞ

U

� �
fmðgÞge ¼ 0; ð47aÞ

d

dg
ge dgnðgÞ

dg

� �
þ k2

n

k2
n

Pe2
þ uðgÞ

U

� �
gnðgÞge ¼ 0. ð47bÞ

The substitution of h1 and h2 from Eqs. (46a) and (46b)
into Eqs. (24) and (25) leads to the relations for the deter-
mination of the coefficients Am and Bm. The condition
h1 = h2 at x = 0 yieldsX1
m¼1

BmgmðgÞ ¼ 1þ
X1
m¼1

AmfmðgÞ ð48aÞ

and the relation oh1=o�xj�x¼0 ¼ oh2=o�xj�x¼0 yieldsX1
m¼1

�k2
mBmgmðgÞ ¼

X1
m¼1

b2
mAmfmðgÞ. ð48bÞ

Following the application of the orthogonality condition
and other algebraic manipulations in [11,12], the coeffi-
cients are

An ¼

R 1

0

b2
n

Pe2 þ uðgÞ
U

h i
fnðgÞge dgR 1

0

2b2
n

Pe2 þ uðgÞ
U

h i
f 2

n ðgÞge dg
ð49aÞ

that becomes

An ¼
2

bn

1

½dfnðgÞ=dbn�g¼1

ð49bÞ

and

Bn ¼

R 1

0

k2
n

Pe2 þ uðgÞ
U

h i
gnðgÞge dgR 1

0

2k2
n

Pe2 þ uðgÞ
U

h i
g2

nðgÞge dg
ð50aÞ

that becomes

Bn ¼ �
2

kn

1

½dgnðgÞ=dkn�g¼1

. ð50bÞ

It is remarkable that An, Eq. (49b), depends only on the
parameters within the h1 solution and Bn, Eq. (50b), de-
pends only on the parameters within the h2 solution.

The temperature solution, using the aforementioned
exact analysis provided accurate results when x is relatively
large. However, the solution may require many eigenvalues
at small values of �x. Once the temperature solution is
known, the heat transfer coefficient h = qw/(T2 � Tb) is
obtainable following the determination of wall heat flux
qw ¼ ðoT=orÞjr¼ro

and the bulk temperature Tb. It can be
written in dimensionless form as

Nu ¼ hLc=ke ¼ �
1

hb

X1
m¼1

Bm
dwðgÞ

dg

����
g¼1

e�k2
m�x; ð51Þ

where

hb ¼
T b � T 2

T 1 � T 2

¼ ð1þ eÞ
X1
m¼1

Bme�k2
m

Z 1

0

u
U

� �
wmðgÞge dg

¼ ð1þ eÞ
X1
m¼1

Bme�k2
m � k2

m

Pe2

Z 1

0

wmge dg� 1

k2
m

dwðgÞ
dg

����
g¼1

" #
.

ð52Þ

As stated earlier, for parallel plate channels, the parameter
e = 0 and wm(g) stands for Y mð�yÞ in Eq. (13b). For circular
pipes, the parameter e = 1 and wm(g) stands for Rmð�yÞ in
Eq. (42b) while hb stands for h2,b.

5. Numerical studies

This numerical study evaluates the exact series solution
in the presence of axial conduction for each case mentioned
earlier. Three different MDa values are selected, 1, 10�3,
and 10�5. This will permit one to observe the influence of
Pe at small, intermediate, and large values of MDa. For
each MDa value, the data for Pe values of 1, 2, 5, 10,
and 1 are presented.

5.1. Parallel plate channels

For parallel plate channels, data are acquired for the
Nusselt number Nu = hH/ke and the bulk temperature
hb = (Tb � T2)(T1 � T2) for three selected MDa values. It
is customary to show the variation of Nusselt number as
a function of (x/H)/Pe while having Pe as a parameter.
Fig. 2(a) shows the Nusselt number and Fig. 2(b) provides
the bulk temperature as a function of (x/H)/Pe for
MDa = 10�5. Similarly, Figs. 3(a and b) and 4(a and b) dis-
play the variation of the Nusselt number and the bulk tem-
perature when MDa = 10�3, and 1. It is to be noted that
both values of MDa and hb are needed in order to deter-
mine the heat flux values at the wall; that is

qwH
keðT 2 � T 1Þ

¼ Nu� hb. ð53aÞ
5.2. Circular pipes

The data for circular pipes are also acquired for Nu =
hro/ke and hb when MDa = 10�5, 10�3, and 1. Fig. 5(a) dis-
plays the variation of Nusselt number as a function of
(x/H)/Pe when Pe = 1, 2, 5, 10, and 1 while Fig. 5(b)
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provides the corresponding values of the bulk temperature
hb. Moreover, Figs. 6 and 7 demonstrate the influence of
MDa values of 10�3 and 1, respectively. Again, the values
of Nu and hb are needed in order to determine the heat flux
values at the wall; that is

qwro

keðT 2 � T 1Þ
¼ Nu� hb. ð53bÞ

It is to be noted that for small values of Pe numbers, the
spacing between the adjacent eigenvalues will reduce signif-
icantly. This indicates that a larger number of eigenvalues
should be computed in order to achieve a desired accuracy.
Table 1 is an illustration of this phenomenon for parallel
plate channels wherein the first 15 eigenvalues are listed
when MDa = 10�5. Table 2 shows a similar behavior for
circular pipes. In each of these two tables, the eigenvalues
for Pe =1, 5 and 1 are tabulated. Both km and k2

m are re-
tained mainly to show when Pe =1, the spacing between
km values approaches p. However, as Pe decreases, the
spacing between eigenvalues also decreases. When Pe = 1,
the spacing between adjacent k2

m values approaches p. This
is expected because, when Pe is small, the term containing
k4

m=Pe2 in Eq. (11) or in Eq. (33) will begin to dominate
instead of the term containing k2

m. Accordingly, as Pe
decreases, it is necessary to compute a larger number of
eigenvalues for a comparable accuracy. Accurate computa-
tion of eigenvalues is an essential part of this study. All
computations were performed symbolically using Mathem-
atica [13].

6. Discussion

In the aforementioned presentation, it is assumed that
the effect of viscous dissipation is negligible. The method
of including the effects of frictional heating is well known.
This section discusses a few mathematical details mainly to
complete this presentation. The energy equation for paral-
lel plate channels become

ke

o2T i

oy2
þ lu2

K
þ le

ou
oy

� �2
" #

¼ Cu
oT i

ox
� ke

o2T i

ox2
for i ¼ 1 and 2 ð54aÞ

that in dimensionless form becomes

d2hi

d�y2
þ Br

u
U

� �2

þMDa
oðu=UÞ

o�y

� �2
" #

¼ u
U

ohi

o�x
� 1

Pe2

d2hi

d�x2
for i ¼ 1 and 2; ð54bÞ

where Br = lU2/[Dake(T1 � T2)] is the Brinkman number.
All the boundary conditions remain the same as those
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described earlier. The transformation to covert Eq. (54b) to
Eq. (9) is readily available in [5, Eq. (32)]; it is

hi;sð�yÞ ¼
x2

4½x� tanhðxÞ�2
f2x2ð1� �y2Þ � 8½1� coshðx�yÞ

= coshðxÞ� þ ½coshð2xÞ � coshð2x�yÞ�=cosh2ðxÞg.
ð55Þ

Therefore, adding Brhi;sð�yÞ, to hið�y;�xÞ is required in order
to include the effect of viscous dissipation and, sub-
sequently, the application of the Fourier heat conduction
at the wall leads to the relation

�ohi;sð�yÞ
oy

����
�y¼1

¼ x
x� tanhðxÞ ð56Þ

that determines the contribution of frictional heating to the
wall heat flux. As an example, for MDa = 10�5, 10�3, and
1, Eq. (56) yields �h0i;sð1Þ ¼ 1:00317, 1.03266, and 4.19453.
The contribution of the viscous dissipation to the bulk tem-
perature is readily available in [5, Eq. (30a)]

hb;sðxÞ ¼
x2

48

1

x coshðxÞ � sinhðxÞ

� �3

½ð12x3 � 150xÞ

� coshðxÞ þ ð4x3 � 30xÞ � coshð3xÞ
þ 57 sinhðxÞ þ 41 sinhð3xÞ�. ð57Þ
Therefore, the dimensionless bulk temperature hb should
be augmented by the quantity Brhb,s. Similar equations,
but with different forms are also available in [8]. For
MDa = 10�5, 10�3, and 1 used in Figs. 2–4, Eq. (57)
provides hb,s = 0.33649, 0.36443, and 1.26162.

The process is similar for circular pipes. The governing
diffusion equation in cylindrical coordinates is

ke

1

r
o

or
r
oT i

or

� �
þ leu

2

K
þ le

ou
or

� �2
" #

¼ Cu
oT i

ox
� ke

o2T i

ox2
for i ¼ 1 and 2 ð58aÞ

that in dimensionless form becomes

1

�r
o

o�r
�r
ohi

o�r

� �
þ Br

u
U

� �2

þMDa
oðu=UÞ

o�r

� �2
" #

¼ u
U

ohi

o�x
� 1

Pe2

d2hi

d�x2
for i ¼ 1 and 2. ð58bÞ

The transformation to covert this equation to the form of
Eq. (32) without any changes in the boundary condition
is readily available in [6, Eq. (43)]; it is Brhi,s where

hi;sð�rÞ ¼
1

4½x� 2I1ðxÞ=I0ðxÞ�2
6� 8

I0ðx�rÞ
I0ðxÞ

� �	

þ 2
I0ðx�rÞ
I0ðxÞ

� �2

� x2ð1� �r2Þ
)

. ð59Þ
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As in the previous case, �Brohi;sð�rÞ=o�rj�r¼1 yields the contri-
bution of frictional heating to the wall heat flux where

�ohi;sð�rÞ=o�rj�r¼1 ¼
x2 � 2I1ðxÞ=I0ðxÞ

2½x� 2I1ðxÞ=I0ðxÞ�2
. ð60Þ

For MDa = 10�5, 10�3, and 1 used in Figs. 5–7, Eq. (60)
produces �h0i;sð1Þ ¼ 0:50318, 0.53318, and 4.66331. Finally,
the dimensionless bulk temperature in circular pipes hi,b

must be augmented by the influence of frictional heating
Brhb,s where [6, Eq. (38)].

hb;s ¼
x2

8½x� 2I1ðxÞ=I0ðxÞ�3
x½ðx2� 32Þþ 20I1ðxÞ2=I0ðxÞ2�
	

þ4½ð14�x2ÞI1ðxÞþ 2xI2ðxÞþx2I3ðxÞ�=I0ðxÞ

þ8x
Z 1

0

½I0ðx�rÞ=I0ðxÞ�3�rd�r



. ð61Þ

For MDa = 10�5, 10�3, and 1, Eq. (61) yields hb,s =
0.12737, 0.14880, and 1.13609.

The influence of frictional heating for different Br values
is well documented in [8,9] with graphical presentation of
the data for parallel plate channels and circular pipes.
For the data presented in Figs. 2–7, one can compute the
Nusselt number that includes the contribution of frictional
heating. Using the product of Nu · hb as given in Figs. 2–7,
the relation
Nutotal ¼
Nu� hb � Br � h01;sð1Þ

hb þ Br � hb;s
ð62Þ

can provide the total effects due to wall temperature change
and frictional heating. Test results indicate that they agree
well with the reported data in [8,9]. However, there are
some small differences mainly due to expected numerical
errors from numerical computations. As an illustration,
in the absence of axial conduction, the accuracy of the fully
developed Nusselt number is directly related to the first
eigenvalue, and the reported Nusselt numbers [8] for
MDa = 10�5 and 1 are 2hH/ke = 4.920 and 3.806. These
agree well with 2 · 4.60 = 4.920 and 2 · 1.901 = 3.802
taken from Figs. 2(a) and 4(a), respectively. This limiting
value changes in the presence of frictional heating. Nield
et al. [8] reports 2hH/ke = 6.641 for MDa = 1 when using
the viscous dissipation effect as given in [14]. For this case,
Eq. (62) yields 2hH=ke ¼ �2ðh02;sð1Þ=h2;bÞ ¼ 2ð4:19453=
1:26162Þ ¼ 6:649.. Similarly, in the absence of frictional
heating, for MDa = 10�5 and 1, [9] reports 2hro/ke = 5.750
and 3.958. These are in reasonably good agreement with
2 · 2.873 = 5.746 while there is a noticeable difference with
2 · 1.847= 3.694 when using the data in Figs. 5(a) and 7(a),



Table 1
First 15 eigenvalues for a parallel plate channel when MDa = 10�5

Eigenvalue
no.

Pe = 1 Pe = 5 Pe =1
k k2 k k2 k k2

1 1.0711 1.1473 1.5022 2.2566 1.5683 2.4596
2 2.0585 4.2374 3.7618 14.1513 4.7049 22.1365
3 2.7145 7.3684 5.3557 28.6838 7.8416 61.4904
4 3.2412 10.5054 6.6220 43.8503 10.9783 120.5222
5 3.6938 13.6445 7.6974 59.2501 14.1150 199.2325
6 4.0969 16.7845 8.6464 74.7598 17.2517 297.6225
7 4.4637 19.9250 9.5042 90.3298 20.3886 415.6937
8 4.8027 23.0657 10.2925 105.9363 23.5255 553.4476
9 5.1192 26.2067 11.0257 121.5666 26.6624 710.8860
10 5.4174 29.3478 11.7138 137.2132 29.7995 888.0112
11 5.6999 32.4890 12.3641 152.8715 32.9367 1084.8251
12 5.9691 35.6303 12.9822 168.5385 36.0740 1301.3302
13 6.2267 38.7716 13.5725 184.2121 39.2113 1537.5291
14 6.4740 41.9130 14.1383 199.8908 42.3488 1793.4242
15 6.7123 45.0544 14.6824 215.5736 45.4865 2069.0181

Table 2
First 15 eigenvalues for a circular pipe when MDa = 10�5

Eigenvalue
no.

Pe = 1 Pe = 5 Pe =1
k k2 k k2 k k2

1 1.3978 1.9537 2.1960 4.8223 2.3972 5.7467
2 2.2449 5.0398 4.2134 17.7525 5.5026 30.2790
3 2.8575 8.1652 5.6992 32.4808 8.6264 74.4148
4 3.3614 11.2991 6.9069 47.7055 11.7543 138.1647
5 3.7995 14.4362 7.9453 63.1279 14.8839 221.5308
6 4.1922 17.5749 8.8684 78.6478 18.0143 324.5145
7 4.5513 20.7145 9.7068 94.2228 21.1452 447.1174
8 4.8841 23.8545 10.4801 109.8318 24.2764 589.3413
9 5.1957 26.9950 11.2010 125.4634 27.4078 751.1880
10 5.4896 30.1356 11.8790 141.1106 30.5395 932.6597
11 5.7686 33.2765 12.5207 156.7691 33.6713 1133.7585
12 6.0347 36.4174 13.1315 172.4361 36.8034 1354.4870
13 6.2896 39.5585 13.7153 188.1096 39.9355 1594.8475
14 6.5345 42.6997 14.2754 203.7881 43.0679 1854.8427
15 6.7706 45.8409 14.8145 219.4707 46.2004 2134.4753
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respectively. In the presence of frictional heating, Ref. [9]
reports 2hro/ke = 8.206 for MDa = 1 and the viscosity dis-
sipation model in [14]. Using Eq. (62), and the procedure
described earlier, this study yields 2hro/ke = 2(4.66331/
1.13609) = 8.209.

7. Conclusion

The exact series solution permits one to compute
temperature and heat flux with a high degree of accuracy.
Therefore, such solutions are valuable for the purpose of
verification of the numerical solutions. The data reported
here indeed shows that the numerically acquired data in
Nield et al. [8], for entrance flow problems in the presence
of frictional heating and axial conduction for parallel
plate channels, are sufficiently accurate. A similar conclu-
sion was realized by comparing the present data with the
graphical presentation in Kuznetsov et al. [9] for circular
pipes.
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